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DYNAMIC ELASTOPLASTIC INTERACTION

BETWEEN AN IMPACTOR AND A SPHERICAL SHELL

UDC 539.3D. G. Biryukov and I. G. Kadomtsev

Dynamic axisymmetric elastoplastic interaction between a massive body and a simply supported,
circular segment of a spherical shell is studied. The problem of determining the contact-interaction
force is formulated for the case of spherical and conical bodies. A nonlinear integral equation is derived
for various models of local plastic compression using the equations of equilibrium of a membrane
spherical shell written in terms of radial displacement of the shell. Numerical results are presented
graphically.

Assuming that the mutual velocity is much lower than the velocity of elastic waves in the materials, we
reduce the dynamic problem to a quasistatic problem by ignoring inertia effects in the local-compression zone.
Displacements of the shell are considered elastic except in the contact zone, where elastoplastic deformation occurs.
Initially, the shell is at rest. A body of mass m with elastic constants E2 and ν2 and plastic constant k2 impacts
on the shell vertex.

We denote the displacement of the falling body by s, the displacement of the shell at the contact point by w,
and the local plastic compression by α. In this case, we have [1]

s = w + α. (1)

To determine the displacement of the impactor s, we use the differential equation of motion ms̈ = −P (t).
Integration of this equation subject to the initial conditions s0 = 0 and ṡ0 = V0 yields

s(t) = V0t−
1
m

t∫
0

t1∫
0

P (t2) dt2 dt1, (2)

where V0 is the initial velocity of the impactor directed along the shell radius.
The displacement of the shell due to the force applied to its vertex is determined from the equations of

motion of a membrane spherical shell:

(Nϕ sinϕ),ϕ −Nθ cosϕ = ρhR1üϕ sinϕ, Nϕ +Nθ = −ρhR1ẅ + q3R1; (3)

Nϕ = E1h((1− ν2
1)R1)−1(uϕ,ϕ + w + ν1(uϕ cot ϕ+ w)),

(4)

Nθ = E1h((1− ν2
1)R1)−1(uϕ cot ϕ+ w + ν1(uϕ,ϕ + w)).

Here ρ is the density of the material, h and R1 are the thickness and radius of the shell, q3 is the load, and E1 and
ν1 are the elastic constants of the shell; the coordinate lines ϕ and θ are directed along a meridian and a parallel,
respectively. The plastic constant of the shell is denoted by k1.

The boundary conditions have the form

uϕ|ϕ=ϕ0 = 0, w|ϕ=ϕ0 = 0, (5)

where ϕ0 is the shell opening angle.
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We introduce the following dimensionless quantities: v = uϕ/R1, w = w/R1, τ = tc/R1, and c2 = E1((1 −
ν2

1)ρ)−1. Then, Eqs. (3) and (4) are written as

(Nϕ sinϕ),ϕ −Nθ cosϕ = E1h(1− ν2
1)−1v,ττ sinϕ,

Nϕ +Nθ = −E1h(1− ν2
1)−1w,ττ + q3R1,

Nϕ = E1h(1− ν2
1)−1(v,ϕ + w + ν1(v cot ϕ+ w)),

Nθ = E1h(1− ν2
1)−1(v cot ϕ+ w + ν1(v,ϕ + w)).

Elimination of the forces Nϕ and Nθ from these equations yields

v,ϕϕ sinϕ+ v,ϕ cosϕ− (cot ϕ cosϕ+ ν1 sinϕ)v + (1 + ν1)w,ϕ sinϕ = v,ττ sinϕ,

(1 + ν1)(v,ϕ + v cot ϕ+ 2w) = −w,ττ + q, q = (1− ν2
1)(E1h)−1R1q3.

We make the replacement vϕ = v sinϕ:

vϕ,ϕϕ − vϕ,ϕ cot ϕ+ (1− ν1)vϕ + (1 + ν1)w,ϕ sinϕ = vϕ,ττ ,

(1 + ν1)(vϕ,ϕ sin−1 ϕ+ 2w) = −w,ττ + q.

We apply the Laplace transform over time t denoting the images vϕ, w, and q by v∗ϕ, w∗, and q∗, respectively:

v∗ϕ,ϕϕ − v∗ϕ,ϕ cot ϕ+ (1− ν1 − p2)v∗ϕ + (1 + ν1)w∗,ϕ sinϕ = 0,
(6)

(1 + ν1)v∗ϕ,ϕ sin−1 ϕ+ (2(1 + ν1) + p2)w∗ = q∗.

System (6) can be written as

(v∗ϕ,ϕ sin−1 ϕ),ϕ + (1− ν1 − p2)v∗ϕ sin−1 ϕ+ (1 + ν1)w∗,ϕ = 0,

(1 + ν1)(v∗ϕ,ϕ sin−1 ϕ),ϕ + (2(1 + ν1) + p2)w∗,ϕ = q∗,ϕ.

Eliminating (v∗ϕ,ϕ sin−1 ϕ),ϕ, we obtain

v∗ϕ = sinϕ((1 + ν1)(1− ν1 − p2))−1(w∗,ϕ(1− ν2
1 + p2)− q∗,ϕ).

Differentiation of the expression for v∗ϕ with respect to ϕ yields

v∗ϕ,ϕ = ((1 + ν1)(1− ν1 − p2))−1((1− ν2
1 + p2)(w∗,ϕϕ sinϕ+ w∗,ϕ cosϕ)− (q∗,ϕϕ sinϕ+ q∗,ϕ cosϕ)).

Inserting the last expression into the second equation in (6), we obtain the following equation for w∗:

∇2w∗ + (2(1− ν2
1)− (1 + 3ν1)p2 − p4)(1− ν2

1 + p2)−1w∗ = (1− ν2
1 + p2)−1(∇2q∗ + (1− ν1 − p2)q∗), (7)

where ∇2 = ∂2/∂ϕ2 + (∂/∂ϕ) cot ϕ.
We seek a solution of (7) in the form of a series in Legendre polynomials which possess completeness and

satisfy the boundary conditions (5):

w∗ =
∞∑
n=0

w∗nPn(cos (δ1ϕ)), δ1 =
π

2ϕ0
.

The point load q(t, ϕ) = P (t)δ(ϕ) is also expanded in a series in Legendre polynomials:

q = P (t)(2πR2
1(1− cosϕ0))−1

∞∑
n=0

(2n+ 1)Pn(cos (δ1ϕ)),

q∗ = P ∗(p)(2πR2
1(1− cosϕ0))−1

∞∑
n=0

(2n+ 1)Pn(cos (δ1ϕ)).
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Substituting the expansions of w∗ and q∗ into (7), we obtain

w∗n = P ∗(1− ν2
1)(2n+ 1)(p2 +B)(2πR1hE1(1− cosϕ0)(p4 + p2A2 +A0))−1,

B = nδ1(nδ1 + 1) + ν1 − 1, A2 = nδ1(nδ1 + 1) + 3ν1 + 1,

A0 = (1− ν2
1)nδ1(nδ1 + 1)− 2(1− ν2

1).

Since

p4 + p2A2 +A0 = (p2 + ω2
1)(p2 + ω2

2), ω2
1 = (A2 +

√
A2

2 − 4A0)/2, ω2
2 = (A2 −

√
A2

2 − 4A0)/2,

we obtain an expression for which the Laplace transform is tabulated [2]. Finally, the displacement of the shell w
takes the form

w(ϕ, τ) =
1− ν2

1

2πR1hE1(1− cosϕ0)

τ∫
0

P (τ1)
∞∑
n=0

(2n+ 1)[L1n sin(ω1(τ − τ1)) + L2n sin(ω2(τ − τ1))]Pn(cos (δ1ϕ)) dτ1,

Lin = (B − ω2
i )(ωi(ω2

1 − ω2
2))−1, i = 1, 2.

(8)

Substituting (2) and (8) and expressions for α corresponding to various models of local plastic compression
into (1), we arrive at a nonlinear integral equation for P (t). This equation is solved by the following iterative
scheme [1]:

1) τi = τi;
2) si = si−1 + Vi−1τ + yi−1τ

2/2;

3) wi = τ
1− ν2

1

2πR1hE1(1− cosϕ0)

∞∑
n=0

i−1∑
j=1

Pj(2n+ 1)[L1n sin(ω1(i− j)τ) + L2n sin(ω2(i− j)τ)];

4) αi = si − wi;
5) Pi is calculated for αi;
6) yi = −Pi/m;
7) Vi = Vi−1 + yiτ.

The initial conditions are V |i=0 = V0/c, s0 = 0, and y0 = 0.
Given αi, we calculate Pi using the solution of the contact problem. The following models are employed:
— For a spherical impactor with curvature radius at the contact point R2:

1) elastoplastic model [3, 4]

α =


bP 2/3, Pmax < P1, dP/dt > 0,
bfP

2/3 + αp(Pmax), dP/dt < 0, Pmax > P1,

(1 + β)c1P 1/2 + (1− β)Pd, dP/dt > 0, Pmax > P1,

(9)

where b = R−1/3(3/(4E))2/3, R−1 = R−1
2 − R−1

1 , E = E1E2((1 − ν2
1)E2 + (1 − ν2

2)E1)−1, P1 = χ3(3R/(4E))2,
χ = πkλ (k is the smallest of the two plastic constants of the colliding bodies and λ = 5.7), bf = R

−1/3
f (3/(4E))2/3,

Rf = (4/3)EP 1/2
maxχ−3/2, αp(Pmax) = (1 − β)Pmax(2χRp)−1, R−1

p = R−1 − R−1
f , β = 0.33, c1 = 3χ1/2(8E)−1, and

d = (2χR)−1;
2) Kil’chevskii model [5]

α =


bP 2/3, P < P0, dP/dt > 0,
bP 2/3 + Pd, P > P0, dP/dt > 0,
bP 2/3 + Pmaxd, Pmax > P0, dP/dt < 0,

(10)

where P0 = (4/3)Ea3
0R
−1 and a0 = πkR(0.62E)−1;

3) Hertz model

α = bP 2/3; (11)

4) rigid-plastic model [follows from (9) if the elastic terms are ignored]

α = (1− β)Pd; (12)
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Fig. 1. Dependence P (t) for V0 = 0.5 m/sec (P1 = 4470.14 N, P2 = 1609.58 N,
2γ = 150◦, t1 = 0.0002531647 sec, and t2 = 0.0006991468 sec): curve 1 refers to the
elastoplastic model for a sphere (9), curve 2 to the Kil’chevskii model (10), curve 3 to
the Hertz model (11), curve 4 to the rigid-plastic model (12), curve 5 to the elastic
model for a cone (13), and curve 6 to the elastoplastic model for a cone (14).

Fig. 2 Fig. 3

Fig. 2. Dependence P (t) for V0 = 50 m/sec (P1 = 490.28 kN, P2 = 744.3 kN, 2γ = 150◦,
t1 = 0.0001648514 sec, and t2 = 0.0001501326 sec) (notation same as in Fig. 1).

Fig. 3. Dependence P (t) for V0 = 1 m/sec (P1 = 9194.98 N, P2 = 18 352.5 N, 2γ = 178◦,
t1 = 0.0002296145 sec, and t2 = 0.0001766265 sec) (notation same as in Fig. 1).

— For a conical impactor with the opening angle 2γ:
1) elastic model [6]

α = (π cot γ/(2E))1/2P 1/2; (13)

2) elastoplastic model [7]

α =
{
c2P

1/2, dP/dt > 0,
(Pχ)1/2E−1

1 + αp,max, dP/dt 6 0,
(14)

where c2 = cot γ(1 − δ)χ−1/2 + (1 + 2(δ − 1)/π)χ1/2E−1, αp,max = (1 − δ)(Pmax/χ)1/2(cot γ − 2χ/(πE)), and
δ = 0.22.

Figures 1–3 show curves of P (t) obtained with the use of the models of local plastic compression (9)–(14) for
the following parameters: shell radius R1 = 1 m, shell thickness h = 0.01 m, shell opening angle ϕ0 = 90◦, radius
of the spherical impactor R2 = 0.02 m, and mass of the impactor m = 0.25 kg. The shell and impactor were made
of steel [P1, P2 and t1, t2 are the maximum values of the contact force and the duration of contact for spherical
and conical impactors for the elastoplastic models (9) and (14), respectively].

One can see from Figs. 1–3 that the solutions based on models (9) and (14) agree well with the experimental
data of [8]. The Hertz model (11) gives satisfactory results for V0 < 0.15 m/sec, and the rigid-plastic model (12)
is applicable only for V0 > 10 m/sec. For the elastic model of a cone (13), the error in determining the main
characteristics of the impact can be as great as 100%. The Kil’chevskii model (10) also leads to a considerable
error.
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